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Abstract

This paper presents an intelligent fault tolerant flight control
system that blends aerodynamic and propulsion actuation
for safe flight operation in the presence of actuator failures.
Fault tolerance is obtained by a nonlinear adaptive control
strategy based on on-line learning neural networks and
actuator reallocation scheme. The adaptive control block
incorporates a recently developed technique for adaptation
in the presence of actuator saturation, rate limits and failure.
The proposed integrated aerodynamic/propulsion flight
control system is evaluated in a nonlinear flight simulation
environment.

1 Introduction

Actuator failure during flight poses a significant
flight safety concern. Landing an aircraft in the presence of
actuator failures is extremely challenging even to the most
experienced pilot.  Recent accidents have been caused by the
loss of a single actuator, or the loss of all hydraulic
controls.1

Conventional flight control systems require
extensive gain scheduling for a large number of operating
points within the aircraft flight envelope. When such a
controller must be extended to account for actuator failures, a
complete redesign is required for each anticipated failure
case at all the gain scheduled operation points. Many types
of failures can be envisioned, including but not limited to
hardovers, loss of actuator effectiveness, and free-floating
actuators. This leads to a very large scheduling table, making
it difficult from design and real time implementation
standpoints. In addition, a truly fault tolerant control system
must also be able to accommodate non-anticipated failures.

Neural Network (NN) based adaptive flight control,
within the setting of feedback inversion control, has been
shown to require no gain scheduling and is only minimally
model dependent .2-4  Consequently, these flight control
systems can accommodate a multitude of unknown actuator
failures, which act as disturbances on the aircraft. Hence, they
provide an attractive candidate flight control architecture to
ensure flight safety in the presence of unknown actuator
failures.  However, its application to civil transports requires
special attention due to the fact that redundant actuation i s
only possible through low bandwidth and low authority
mechanisms that are usually not intended to be active as a
part of the primary flight control system.  

The objective of this work is to design an
intelligent nonlinear adaptive control architecture that can

respond to faults in the system, by utilizing redundancy in
the controls.  Refs. 3 and 4 demonstrated that such a system
could effectively control an aircraft with major actuator
failures.  Refs. 5 and 6 use a non-adaptive gain scheduled
control design for pure propulsion control to provide
stability augmentation for a large transport aircraft without
any aerodynamic actuation.  Ref. 7 demonstrates that similar
performance is attainable by employing an adaptive
controller without gain scheduling, using a linear model at a
single flight condition for feedback inversion.  However,
those results were limited to examining small command
inputs so that position and rate saturation are avoided, to
guarantee stability and proper NN adaptation.  In this paper,
the problem of continuous control in the presence of both
partial and complete loss of a single or multiple actuators i s
addressed, while utilizing all the remaining control effectors.  
A recently developed pseudo-control hedging (PCH)
methodology4,8,9 is employed to protect the system from the
adverse affects of incorrect adaptation in the presence of slow
actuation, actuator saturation and actuator failure.

2 Intelligent Flight Control System Components

The proposed flight control system is constructed
as a Model Reference Adaptive Control (MRAC) scheme, with
appropriate modifications required to blend aerodynamic
and propulsion control, while operating with possibly
saturated or failed actuators. Figure 1 presents the conceptual
layout of the system, which incorporates an approximate
dynamic inversion block, a linear compensator and an on-
line adaptive NN. The system is driven by the outputs of a
reference model, which has a non-standard input from the
PCH element introduced for proper adaptation in the case of
actuator saturation or failure.

The main advantage of the proposed control setup
is in its minimal dependence on a specific aircraft model.
The adaptive NN is used to compensate for a wide range of
modeling (inversion) errors, which may include the effect of
failed actuators. The compensator design is straightforward
and relies mainly on linear control theory. The NN adaptation
rule results from nonlinear stability analysis, which ensures
that the error signals and network weights are bounded. In
this section, the various elements of this controller setup are
discussed.
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Figure 1.  Model Reference Adaptive Control Setup, Including Approximate
Dynamic Inversion and Pseudo-Control Hedging Compensation.

2.1 Approximate System Linearization

One of the common methods for controlling
nonlinear dynamical systems is based on approximate
feedback linearization.10  The form that is employed in each
control channel depends on the relative degree of the
controlled variable.  To simplify our discussion, we assume
that the system has full relative degree, where each controlled
variable (element of the state vector 

x
) has a relative degree

of two

( )δ,, xxfx &&& = (1)

In the case of aircraft, typically 
3, ∑δx , where the elements

of x  correspond to the roll, pitch and yaw attitude angles.  A
variant of this form arises in which angular rate is controlled.
Here, the equation of motion for that degree of freedom is
expressed in first order form3.  A pseudo-control ν  i s
defined such that the dynamic relation between it and the
system state is linear

ν=x&& (2)
where

( )δν ,, xxf &= (3)

Ideally, the actual controls ( )δ  are obtained by inverting Eq.

(3).  Since the function ( )δ,, xxf &  is not known exactly, an
approximation is defined

( )δν ,,ö xxf &= (4)

which results in

( )δν ,, xxx &&& ∆+= (5)

where the modeling error is represented by

( ) ( ) ( )δδδ ,,,,,, xxfxxfxx &&& −=∆ (6)

The approximation, f , is chosen such that an inverse with

respect to δ  is computable.  Consequently, the actuator
command is constructed as

( )νδ ,,ö 1 xxfcmd &−= (7)

Approximate dynamic inversion produces a model
inversion error that will be adaptively compensated using an
on-line neural network. As shown in Figure 1, the total
pseudo-control signal is constructed of three components

adlcrm νννν −+= (8)

where rmν  is the pseudo-control component generated by the

reference model, lcν  is the output of the linear compensator,

and adν  is generated by the adaptive element introduced to

compensate for the model inversion error. In the case of
perfect actuation ( )cmdδδ = , the commanded pseudo-control

signal generated by the reference model equals rmx&& , the

acceleration of the reference model state.

2.2 Linear Compensator Design

A linear compensator is designed for each degree of

freedom assuming perfect inversion ( )ff =ö
.  If the

controlled variable has relative degree two (as illustrated in
the preceding section), the state tracking error dynamics
associated with the linearized plant have two poles at the
origin.  The linear compensator is designed so that the error
dynamics are stabilized. This is most often achieved using
standard proportional-derivative (PD) controllers, although
additional integral action can be incorporated to improve
steady state performance. In general, the linear compensator
can be designed using any technique as long as the
linearized closed loop system is stable.

For the second order system, PD compensation i s
expressed by

[ ]eKK DPlc  =ν (9)

where the state tracking error is defined by
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The compensator gain matrices 
33, ↔∑DP KK  are chosen so

that the tracking error dynamics given by

( )∆−+= adBAee ν& (11)
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are stable, i.e., the eigenvalues of A are prescribed.  It i s

evident from Eq. (11) that the role of the adaptive
component, adν , is to cancel ∆ .

Eqs. (6-8) imply that the model inversion error ∆
is a function of the pseudo-control ν  and consequently of
the NN output adν . To guarantee existence and uniqueness

of a solution for adν  that produces any (unknown) ∆ , it i s

assumed that the map ∆aadν  is a contraction.  It can be

shown that this is equivalent to the following two

requirements on fö :
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The linearized closed loop system is driven by the
output of an at least 2nd order reference model.  The reference
model is hedged in the presence of saturation or failure using
the pseudo-control hedging methodology, presented next.

2.3 Pseudo-Control Hedging

PCH introduces a modification to previous work on
NN based model reference adaptive flight control. It is used
to address NN adaptation difficulties arising from various
actuation anomalies, including actuator position and/or rate
saturation, discrete (magnitude quantized) control, actuator
dynamics, and partial or complete actuator failures.

NN training difficulties occur when unmodeled
actuator characteristics are encountered.  For example, unless
an adaptive process is specifically protected against it,
saturations that result from failed operation quickly lead to
NN wind-up. The main idea behind the PCH methodology i s
to limit or hedge the reference model of a MRAC architecture
to prevent the adaptive element from attempting to adapt to
these characteristics, when they are present, while not
affecting the NN adaptation to other sources of inversion
error, for which compensation is possible.

Conceptually, PCH Òmoves the reference model
backwardsÓ by an estimate of the amount the controlled
system did not move due selected actuator characteristic
(such a position and rate limits, time delays, etc). In effect,
the reference model, which produces the commanded pseudo-
control, is limited or hedged according to the difference
between the commanded and actually achieved pseudo-
control. PCH prevents the NN from adapting erroneously to
actuator saturation or failure by interpreting their effect as

model tracking errors. With PCH, the NN is trained correctly
using only achievable pseudo-control signals. The same
concept holds when the actual pseudo-control action is due
to a different control logic (element) and not the MRAC that
incorporates the training NN, i.e., training while not in
control.

To briefly review the PCH concept, consider the
case of full model inversion, in which the plant dynamics i s
as in Eq. (1).  The pseudo-control signal defined in Eq. (4)
represents, in this simplified presentation, the desired
acceleration, while the actuator commands are given by Eq.
(7).  The dynamic inversion element is designed while
neglecting the actuator model. Hence, this actuator command
( )cmdδ  will not equal the actual actuator position ( )δ  due to

its dynamics, saturation and/or failure.  The pseudo-control
hedge signal hν  is defined as the difference between the

commanded pseudo-control input and the actually achieved
pseudo-control, which is non-zero only when the

commanded actuator position is different from its actual
value. To compute this difference, a measurement or an

estimate of the actuator position ( )δö  is required. This
estimate is then used to compute the pseudo-control hedge
as

( ) ( ) ( )δνδδν ö,,ö  ö,,ö,,ö xxfxxfxxf cmdh &&& −=−= (15)

The PCH signal is next introduced as an additional
input into the reference model, forcing it to Òmove backÓ.  If
the reference model update     without      PCH     was of the form

( )crmrmrmrm xxxfx ,, &&& = (16)

where cx  is the external command signal, then the reference

model update     with      PCH     is set to

( ) hcrmrmrmrm xxxfx ν−= ,, &&& (17)

The instantaneous pseudo-control output of the reference
model that is used as an input to the linearized plant model
is not changed by the use of PCH and remains

( )crmrmrmrm xxxf ,, &=ν (18)

Hence, the effect of the PCH signal on the pseudo-control i s
introduced only through the reference model dynamics.  This
results from the stability analysis of NN based adaptive
control with PCH, detailed in Ref. 9.

2.4 Neural Network for Inversion Error Compensation

In this study, a nonlinear single hidden layer (SHL)
NN is used to compensate for the inversion error. The SHL NN
was chosen because of its universal approximation
property.11,12

For an input vector x , which is constructed of the
measured states, the reference model outputs and the pseudo-
control signal, the output of the SHL NN is given by



( )xVW TT
ad σν = (19)

where V and W are the input and output weighting matrices,
respectively, and σ  is a sigmoid activation function.
Although ideal weighting matrices are unknown and usually
cannot be computed, they can be adapted in real time using
the following NN weights training rules8,9:

( )[ ] W
T WexVW Γ+′−−= κησσ& (20)

[ ]VeWxV T
V κση +′Γ−=& (21)

where WΓ and VΓ are the positive definite learning rate

matrices,  σ ′  is the partial derivative of the sigmoids σ  with
respect to the NN inputs x , and κ  is the e-modification
parameter. η  is defined by

PBeT=η (22)

Here, 0fP  is a positive definite solution of the Lyapunov
equation

0=++ QPAPAT
(23)

for any positive definite 0fQ . A  and B  in the above
equations are the tracking error dynamics matrices defined in
Eq. (12).

3 Actuator Failure Accommodation

A completely failed actuator may introduce no
actuation at all (in the free floating surface case) or cause a
significant disturbance input (in the frozen case, especially
during hardovers.) To accommodate these failures, secondary
actuation systems must be used to maintain control and at
least minimal performance of the aircraft in its flight safety
critical tasks.

To avoid scheduling and repeated designs for
different failures, it is desirable that the design and operation
of these secondary actuation systems do not depend
specifically on the exact nature of the primary actuator
failure. An adaptive control scheme, which can address the
unknown actuator inputs as modeling errors, is most
appropriate for that task. Examining the model error Eq. (6)
reveals that any failure that can be modeled as a (not
necessarily known) function of the system states can be
addressed using the adaptive control scheme presented in the
previous section. This failure characterization is not overly
restrictive, because such functional dependence can represent
most of the commonly encountered actuator failures, such as
position frozen actuators, hardovers, free floating
aerodynamic surfaces, and many more. Hence, the NN based
adaptive secondary actuation systems are designed while
disregarding the possible failures of the primary actuators.
The on-line tuned NN of these channels will adapt to the
failure driven inputs, interpreted as modeling errors, and
compensate for their effect.

Thus, following a failure, the actuation strategy i s
modified to apply secondary control effectors on a failed
channel. It is assumed that the presence of the actuator failure
is known from other information sources (external failure
detection algorithms or on-line monitoring), however no
knowledge of the failure type or ÒsizeÓ is required. The
knowledge that a failure occurred is used only for engaging
the secondary control channel. Often, the secondary actuators
are less effective for the primary control task. The lower
authority of the secondary actuation systems will necessarily
lead to a lower performance control design, reflected in the
reference model and linear compensator characteristics. In
addition, these actuators may saturate or not produce the
required control effort. Hence, the PCH methodology i s
central for efficient application of nonlinear adaptive control
in these secondary channels.

Based on this concept, a chain of alternative
actuation modes can be constructed to accommodate a
multitude of actuator failures. These alternative control
modes will remain in stand-by status and will be engaged
only after a failure has occurred.  The only requirement here
is the knowledge that a particular actuation system has
failed. As an example, a chain of alternative aerodynamic and
propulsion actuations can be applied for continuous pitch
rate control of an aircraft. In normal un-failed mode, elevators
control pitch rate. If elevator failure is encountered,
symmetric ailerons can be introduced for this task, while
compromising performance. However, if the elevator failure
was caused by a loss in the hydraulic power, there is a chance
that the ailerons are also inoperative. In this event, the
propulsion system can be engaged to maintain at least partial
pitch control for safe (stable) flight, with a compromise in
speed control normally obtained by a propulsion based
control logic. Similar control re-allocation logic can also be
constructed for the lateral stability control channels of the
aircraft.

An important feature of the proposed control setup
and the re-allocation scheme is that the primary control
channels can be synthesized using any control design
technique. This implies that the proposed concept can be
added to an existing certified flight control system, thus
further enhancing its flight safety characteristics. No
modifications are required to the existing control channels
logic or architecture.  The only requirement is for an actuator
fault detection algorithm and a switching logic between the
various channels. The latter aspect of this flight safety
system is addressed in a follow-up paper.13

4 Numerical Evaluation

Performance of the proposed adaptive system for
actuator failure accommodation is tested on a numerical
model of the Boeing 747 aircraft.14 The aircraft model i s
constructed of 6DOF nonlinear kinematics, linearized
aerodynamics and propulsion modules, and first-order, rate
and position limited actuators. In this example, control of
the longitudinal channels will be demonstrated.

The primary longitudinal control channels are pitch
rate control using the elevator and forward flight speed
control using thrust, i.e., throttling. Classical linear
controllers are used in these two primary control channels.



Of the two, pitch rate control is considered critical, while
speed control can be abandoned, if necessary, in the event of
an elevator failure.  After elevator failure, secondary pitch
rate control is achieved first through symmetric aileron
actuation. If the ailerons also fail or saturate due to their
limited pitch rate authority, speed control is abandoned and
symmetric thrust is engaged for pitch rate control.

The two primary channels are non-adaptive PI
controllers to track reference models with natural frequencies
and damping coefficients shown in Table 1.  The secondary
NN based control channels have 6 hidden neurons each.  The

approximate dynamics ( )fö  are assumed to be linear
functions of the actuator commands, where the constant
gains are an estimate of the respective actuatorsÕ
effectiveness. The relative degree of the symmetric ailerons
to pitch rate transmission is one, and the linear controller is a
standard PI compensator. The relatively low bandwidth of the
throttle control is included in the design of the propulsion
to pitch rate secondary channel. This relative degree two
channel is controlled by a PD controller.  The dynamic
characteristics of the secondary channels are also shown in
Table 1.

Table 1.  Controller parameters.

The aircraft response to a square wave pitch rate
command is shown in Figure 2.  The corresponding actuator
positions are shown in Figure 3. At t=30 seconds, the
elevator is failed (frozen).  In the time interval of 30 to 60
seconds, symmetric aileron control is engaged for pitch rate
control, until it is also failed at t=60 seconds.  For the
remainder of the simulation, pitch control is achieved with
thrust only, while compromising speed control. Figure 3
shows the actuator command signals.  The engines briefly
saturate on their lower limit twice, but this limited duration
saturation has no significant effect on performance.
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Figure 2.  Pitch response during failures.
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Figure 3.  ActuatorsÕ positions.

The elevator and aileron control loops are only
engaged for the first and second 30-second periods,
respectively, while the engine is being continuously
throttled by the velocity control loop for the first 60 seconds
and the pitch control loop for the remainder of the
simulation.   The forward velocity perturbation, u , is shown
in Figure 4.  While the primary thrust channel is engaged, i t
holds the speed almost constant while the aircraft changes its
pitch attitude. Obviously, after speed control is discontinued
in favor of the thrust to pitch rate channel, flight speed
variations of up to 40ft/sec can be observed.
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Figure 4.  Speed perturbation from initial trim value.

Figure 5 shows the successful identification of the
model inversion error by the NN.  The NN output of the
symmetric aileron channel is compared here to the computed

Mode Actuator nω ζ

Pitch Rate, primary Elevator 3.0 0.70
7

Pitch Rate,
secondary

Sym.
Ailerons

3.0 0.70
7

Pitch Rate,
secondary

Engines 2.0 0.70
7

Speed, primary Engines 0.3 0.70
7



inversion error. The aileron control loop learns the
appropriate inversion error for the time period when it is in
control (t=30-60 seconds), and also the period when it is not.
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Figure 5.  NN output and inversion error for the aileron
channel.

5 Summary

This paper presents an adaptive, NN based flight
control design methodology for actuator failure
accommodation. Safe flight is maintained by incorporating
stand-by control channels, which utilize secondary actuators
to continuously maintain satisfactory or at least stable
operation. The known actuator failures of unknown type and
magnitude are treated as modeling errors and compensated
by the adaptive NN based element of the secondary control
channel.  Each of these secondary control channels i s
designed for the primary control task, while accounting for
the dynamic characteristics of the channel, the possible
degraded authority of the secondary actuator and the limited
achievable performance. Since the design of the secondary
channels does not depend on the architecture of the nominal
case controller, the proposed methodology is ideal for safety
retrofit of any flight control system.
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